Special topics in Bioengineering/Virology

WS 2019/2020

General information

- Student presentations
- Discussions
- Attendance and participation
- One group is presenting
- All others ask questions and discuss (after the presentation)
- All students <u>must</u> read a paper for that day!

- All students get all papers and the book!
- Presenting group gets questions and comments from the audience
- All presentations will be uploaded (dashboard)!
- Use it for learning
- Everyone who asks questions (I will take the notes!) and has attendance of at least 85% gets additional 5 % to the final grade

How to prepare presentation about viruses?

- You get a copy of book
- Or download it from **b-ok.org**
- Virology book: Carter/Saunders: Virology-principles and applications, 2007
- Make a presentation by presenting everything what you think is important about the virus group (!)
- Max. 1 hour

How to prepare presentation from paper?

- Start from the title
- Understand the title
- Read the abstract
- Understand the abstract
- Focus on main parts of the paper
- Explain them
- Max. 1 hour

Grading

- Midterm exam 30%
- Presentation and participation 25 %
- Attendance 5%

Groups

- 7 Master students make 2 presentations about viruses (structure of viruses and virus classification) – 2 groups of students
- 15 undergraduate students make 7 presentations (groups of 2 students): general information about the virus of interest (book chapter) + paper
- Again Master students make 2 additional presentations from the paper and the book chaper (at the end)

Syllabus

Week	Торіс	Students	Material
1	Intro and Syllabus	-	-
2	Intro to Bioengineering and Viruses	-	Presentation
3	Structure of viruses	Music/Smajovic/Ajdina Karic	Chapter 3 (book)
4	Virus classification	Azra Karic/Abdukic/Huseinbegovic/Kurtanovic	Chapter 10 (book)
5	Herpesvirus	Vardic-Kajtazovic/Sezer	Chapter 11 + paper
6	Parvovirus	Sidran/Rudalija/Jusic	Chapter 12 + paper
7	Reovirus	Hrapovic/Šabanovic	Chapter 13 + paper
8	MIDTERM!	-	-
9	Picornavirus	Mezic/Adilovic	Chapter 14 + paper
10	Rhabdovirus	Mahalbasic/Lipjankic	Chapter 15 + paper
11	Retrovirus	Ratkovic/Smajovic	Chapter 16 + paper
12	Adenovirus	Adilce/Fatic	Chapter + paper
13	Bacterial viruses	Music/Huseinbegovic/Ajdina Karic	Chapter 19 + paper
14	Hepadnavirus	Abdukic/Karic/Kurtanovic	Chapter 18 + paper
15	Review and future directions	-	-

Introduction to Bioengineering

The evolution of modern health care system

- Primitive humans disease "visitors" in form of spirits
- Medical practice domain of witch doctors
- Healing process cult
- Herbs and solutions
- Passed on further generations
- Ancient Egypt

- Roman Empire
- Greeks
- The Church
- Renaissance
- England and Henry VIII
- History of modern medicine (Germ Theory)
- Medicine nowadays

Biochemical engineering

- Problems of health professionals
- involve the fundamental aspects of device and systems analysis, design, and practical application
- lie at the heart of processes that are fundamental to engineering practice

- Medically relevant design problems can range from very complex large-scale constructs, such as hospital information systems or
- creation of relatively small and "simple" devices, such as recording electrodes and transducers
- Biomedical engineeres

- involves applying the concepts, knowledge, and approaches of virtually all engineering disciplines
- the opportunities for interaction between engineers and health care professionals are many and varry
- many conflicting opinions concerning the field can be traced to disagreements about its definition

- consider the terms biomedical engineering, bioengineering, biological engineering, and clinical (or medical) engineer
- are defined in the <u>Bioengineering Education</u> <u>Directory</u>

- Bioengineering defined as a basic-research oriented activity closely related to biotechnology and genetic engineering:
- that is, the modification of animal or plant cells or parts of cells
- improve plants or animals or to develop new microorganisms for beneficial ends.

- In the food industry this has meant the improvement of strains of yeast for fermentation
- In agriculture improvement of crop yields by treatment plants with organisms to reduce frost damage

- It is clear that bioengineers for the future will have tremendous impact on the quality of human life
- Typical pursuits include the following:
- The development of improved species of plants and animals for food production
- The invention of new medical diagnostic tests for diseases
- The production of synthetic vaccines from clone cells
- Bioenvironmental engineering to protect human, animal, and plant life from toxicants and pollutants
- The study of protein-surface interactions
- Modeling of the growth kinetics of yeast and hybridoma cells
- Research in immobilized enzyme technology
- The development of therapeutic proteins and monoclonal antibodies

- biomedical engineering appears to have the most comprehensive meaning
- apply electrical, chemical, optical, mechanical, and other engineering principles
- to understand, modify, or control biological (i.e., human and animal) systems
- works within a hospital or clinic, he or she is more properly called a <u>clinical engineer</u>.

- The breadth of activity of biomedical engineers is significant
- The field has moved significantly: from being concerned primarily with the development of medical devices in the 1950s and 1960s
- to include a more wide-ranging set of activities

• now includes many new career areas:

1. BIOMEDICAL ENGINEERING

- Many other applications use the talents and skills of the biomedical engineer
- the list of activities of biomedical engineers depends on the medical environment in which they work (especially clinical engineers):
- essentially responsible for all the high-technology instruments and systems used in hospitals today,
- the training of medical personnel in equipment safety, and the design,
- selection, and use of technology to deliver safe and effective health care

- Clinical engineers today provide extensive engineering services for the clinical staff
- serve as a significant resource for the entire hospital

- Biomedical engineering is thus an interdisciplinary branch of engineering heavily based in both engineering and the life sciences
- ranges from theoretical, nonexperimental undertakings to state-of-the-art applications
- can encompass research, development, implementation, and operation

- like medical practice itself, it is unlikely that any single person can acquire expertise that encompasses the entire field
- explosion of biomedical engineering specialties to cover this broad field
- considerable interplay and overlapping of interest and effort between them

 The field of biomedical engineering offers hope in the continuing battle to provide highquality health care at a reasonable cost

 If properly directed toward solving problems, biomedical engineers can provide the tools and techniques to make our health care system more effective and efficient.

Roles played by Biomedical Engineers

 biomedical engineering involves training essentially three types of individuals:

➤ the clinical engineer in health care,
➤ the biomedical design engineer for industry,
➤ the research scientist

• First type – problem solver:

 Maintains the traditional service relationship with the life scientists who originate a problem that can be solved by applying the specific expertise of the engineer

- Second type technological entrepreneur
- examine some portion of the biological or medical front and identify areas in which advanced technology might be advantageous
- they pose their own problem and then proceed to provide the solution, at first conceptually and then in the form of hardware or software

- Third type engineer-scientist
- primarily interested in applying engineering concepts and techniques to the investigation and exploration of biological processes
- most powerful tool at their disposal is the construction of an appropriate physical or mathematical model of the specific biological system under study

Viruses

Viruses

- genetic elements that cannot replicate independently of a living cell (host cell)
- possess their own genetic information and are thus independent of the host cell's genome
- rely on the host cell for energy, metabolic intermediates, and protein synthesis
- obligate intracellular parasites that rely on entering a suitable living cell to carry out their replication cycle
- have an extracellular form (the virus particle) that enables them to exist outside the host
- that facilitates transmission from one host cell to another
- To multiply, viruses must enter a cell in which they can replicate, a process called infection

Viruses

- Exists in either extracellular or intracellular forms.
- In its extracellular form: is a microscopic particle containing nucleic acid surrounded by a protein coat and other macromolecules
- Virus particle = **virion**
- metabolically inert and cannot generate energy or carry out biosynthesis
- The virus genome moves from the cell in which it was produced to another cell inside the virion.
- Once in the new cell, the intracellular state begins and the virus replicates.

ALL viruses follow a simple three part general strategy to ensure survival

• All viruses package their genomes inside a particle used for transmission of the genome from host to host.

• The viral genome contains the information to initiate and complete an infectious cycle within a susceptible and permissive cell.

 All virus genomes are able to establish themselves in a host population so that viral survival is ensured.

SURVIVAL!!!!

The tactics used to achieve is very diverse

- There are countless virus particles out with big diversity:
 - Size, nature, topology of genomes.
 - Strange particles
 - Different coding strategy

General Properties of Viruses

- <u>Virus</u>: very small, infectious, obligate intracellular parasites.
- *Virus particle (virion)*: extracellular form of a virus
 - Exists outside host and facilitates transmission from one host cell to another
 - Contains nucleic acid genome surrounded by a protein coat and, in some cases, other layers of material

General Properties of Viruses

- Viral Genomes
 - DNA or RNA genomes (at different stages of their replication cycle both can be used)
 - Some circular, but most linear
 - DNA viruses follow central dogma (DNA->RNA->Protein) but not the RNA

Viral Host and Taxonomy

•Classification: based on their genome and of host they infect!

- Bacterial viruses (bactriophages)
- Archeal
- Plant
- Animal

Nature of the Virion

- Virions come in many sizes and shapes
- Most viruses are smaller than prokaryotic cells.
 - 0.02 to 0.3 μm (20-300 nm)
 - *Smallpox* is one of the biggest, 200nm.
 - *Poliovirus* one of the smallest 28nm.
- Viral genomes are smaller than those of most cells.
 - Bacterial genome are between 100-5000 Kbp
 - Largest know virus genome *Mimivirus* consist of 1.18Mbp
 - Larger than some cellular genomes

Figure 6.1 Size comparison of viruses with a yeast cell colored blue (eukaryotic) and various bacteria (prokaryotic). Viruses range from largest (1) to smallest (10). A molecule of a large protein (11) is included to indicate relative size of macromolecules.

Enzymes in viruses

- Some virions contain enzymes critical to infection
 - <u>Lysozyme</u>
 - Makes hole in cell wall (initial stage of infection)
 - Lyses bacterial cell (later stage of infection)
 - Nucleic acid polymerases
 - For viral replication and transcription
 - Reverse DNA polymerase
 - <u>Neuraminidases</u>
 - Some animal viruses for their release form host!
 - Enzymes that cleave glycosidic bonds of animal connective tissue
 - Allows liberation of viruses from cell

The Virus Host

- Because viruses replicate only inside living cells, the cultivation of viruses requires the use of appropriate hosts!
- Bacterial viruses (bacteriophage) are easiest to grow; model systems
 - Pure cultures are grown in liquid or semisolid (agar) medium
- Animal viruses (and some plant viruses) can be cultivated in tissue or cell cultures
- Plant viruses typically are most difficult because study often requires growth of whole plant

Quantification of Viruses

- necessary to quantify the number of virions in a suspension:
 - Counting using electron microscope
 - Measuring of their effects on the host
- By determining the number of infectious units per volume of fluid, a measure of virus quantity, called a <u>titer</u>, can be obtained.

Quantification of Viruses

- Traditional Methods
 - Plaque assay
 - 50% Tissue culture Infective Dose
 - Fluorescent Focus Assay
 - Proteins Assay
 - Transmission Electron Microscopy
- Modern Methods
 - Flow cytometry
 - Quantitative Polymerase Chain Reaction (qPCR)
 - Enzyme Linked Immunosorbent Assay (ELISA)

General Features of Virus Replication

- Phases of Viral Replication
 - <u>Attachment (adsorption)</u> of the virus to a susceptible host cell
 - <u>Entry (penetration)</u> of the virion or its nucleic acid
 - <u>Synthesis</u> of virus nucleic acid and protein by cell metabolism as redirected by virus
 - <u>Assembly</u> of capsids and packaging of viral genomes into new virions (maturation)
 - <u>Release</u> of mature virions from host cell

Viral Proteins

- Production follows synthesis of viral mRNA
 - Early proteins
 - synthesized soon after infection
 - necessary for replication of virus nucleic acid
 - typically act catalytically
 - synthesized in smaller amounts

Viral Proteins

– <u>Late proteins</u>

- Synthesized later
- Include proteins of virus coat (capsid)
- Typically structural components
- Synthesized in larger amounts

- Virus infection upsets the regulatory mechanisms of the host
- marked overproduction of viral nucleic acid and protein in the infected cell.
- In some cases, virus infection causes a complete shutdown of host macromolecular synthesis
- in other cases, host synthesis proceeds concurrently with virus synthesis.
- In either case, regulation of virus synthesis is under the control of the virus rather than the host.

Viral life cycle

Virulent (or lytic)mode: viruses lyse or kill their hosts after infection (phage T4)

Temperate (or lysogenic) mode: viruses replicate their genomes in step with the host genome and without killing their hosts.

Subviral Entities

- There are several infectious agents that resemble viruses but whose properties are at odds with this definition, and are thus not considered viruses:
 - Defective Viruses
 - Viroids
 - Prions

Defective Viruses

- <u>Defective viruses</u>: viruses that are parasitic on other
 - viruses
 - Require other virus (*helper virus*) to provide some function
 - Some rely on intact virus of same type
 - <u>Satellite viruses</u>: defective viruses for which no intact version exists; rely on unrelated viruses as helpers
 - Example: bacteriophage P4, of *E coli* needs P2 for major capsid proteins.
 - Example: Adeno Associate Virus, Adenovirus

Viroids

- <u>Viroids</u>: infectious RNA molecules that lack a protein coat (capsid)
 - Smallest known pathogens (246–399 bp)
 - Cause a number of important plant diseases (not animals or prokaryotes)
 - Small, circular, ssRNA molecules
 - Do not encode proteins; completely dependent on hostencoded enzymes

Prions

- They have distinct extracellular form, which consist entirely of proteins.
- The prion particle contains neither DNA nor RNA.
- Known to cause disease in animals. (scrapie in sheep)

Prions

- animal (cow) prion disease are known as bovine spongiform encephalopathie (BSE).
- The pathogenic form of the prion protein, PrPSc (prion protein Scrapie), because the first prion disease to be discovered was scrapie in sheep.
- PrPSc is identical in amino acid sequence to PrPC from the same species, but has a different conformation.

- Native prions consist largely of α-helical segments,
- whereas pathogenic prions have less α helix and more β -sheet regions instead.
- This causes the prion protein to lose its normal function, to become partially resistant to proteases, and to become insoluble, leading to aggregation within the neural cell

